Abstract Submitted for the DFD19 Meeting of The American Physical Society

Toward investigation of local vortex line topology in turbulence BAJRANG SHARMA, RISHITA DAS, SHARATH GIRIMAJI, Texas A&M University — Current vortex identification methods employ Q or λ_2 criterion to investigate vortical structures in turbulent flows. We propose an alternate method to examine the local vortex structure. Specifically, we construct the vorticity vector field $(\vec{\omega})$ and compute the vorticity gradient tensor $(J_{ik} \equiv \partial \omega_i / \partial x_k)$. The tensor (J_{ik}) , similar to the velocity gradient tensor $(A_{ij} \equiv \partial u_i / \partial x_j)$, is trace free. In a manner similar to streamline topology analysis using the second and third invariants of A_{ij} , the second (Q_{ω}) and third (R_{ω}) invariants of J_{ik} are used to develop the topological description of local vortex line structure. Such a representation is not only useful for investigation of the local vortex-line structure but is also useful in identifying key turbulence phenomena such as vortex line reconnection. Direct numerical simulation (DNS) data of incompressible forced isotropic turbulence and perturbation-evolution in plane-Poiseuille flow are analysed in this study. We investigate the following: (i) distribution in these two key canonical turbulent flows; and (ii) the formation of hair-pin vortices in transitioning plane Poiseuille flow using the aforementioned method.

> Bajrang Sharma Texas A&M University

Date submitted: 30 Jul 2019

Electronic form version 1.4