Effects of Prandtl number in quasi-two-dimensional turbulent Rayleigh-Bénard convection

XIAO-MING LI, JI-DONG HE, PENG HAO, SHI-DI HUANG, Department of Mechanics and Aerospace Engineering, South University of Science and Technology, Shenzhen, Guangdong 518055, China — We report an experimental study of the Prandtl (Pr) number effects on flow pattern and local temperature fluctuation in quasi-two-dimensional turbulent Rayleigh-Bénard convection. The experiments were conducted in four rectangular cells with same aspect ratio but different heights, the Rayleigh number Ra range ($1e9 – 2e10$) remains unchanged while Pr is varied from 11.6 to 157.4. The flow patterns visualized by the shadowgraph show that thermal plumes become more slender as Pr increases, and their organized-motion is more concentrated towards the sidewall. The mean flow strength, characterized by the Reynolds number Re, becomes weaker with the increase of Pr, i.e. $Ra^{0.57}Pr^{-0.81}$. It is further found that the temperature fluctuations in the center ($\sigma_c/\Delta T$) and near sidewall ($\sigma_s/\Delta T$) behave different, i.e. $Pr^{-0.19}Ra^{-0.28}$ and $Pr^{0.10}Ra^{-0.20}$, respectively. This result quantitatively demonstrates that, as Pr increases, thermal plumes prefer to move along the sidewall rather than traveling through the center of the cell.

1This work was supported by the National Natural Science Foundation of China under Grant Nos. 11702128 and 91752201.

XIAO-MING LI
Dept of Mech and Aerospace Eng, South University of Science and Tech

Date submitted: 01 Aug 2019
Electronic form version 1.4