Passive control of vortex-induced vibration of a sphere.1 ANCHAL SAREEN2, University of Minnesota, JOHN SHERIDAN, KERRY HOURIGAN, MARK THOMPSON, Monash University — Although passive methods for controlling vortex-induced vibrations (VIV) are extensively studied for a circular cylinder, such methods remain unexplored for a basic three-dimensional bluff body, a sphere. In this study, we use a surface trip wire as a passive method to control sphere VIV. The effect of a surface trip is experimentally investigated for varying diameter ($1.25 \times 10^{-2} \leq k/d \leq 6.63 \times 10^{-2}$) and stream wise location ($\phi = 20^\circ - 70^\circ$ from the stagnation point) of the trip wire for a wide range of reduced velocities ($3 \leq U^* \leq 20$). It was found that the vibration amplitude decreases progressively with the increase in the stream wise location angle (ϕ) of the trip wire. The control was highly effective in mode II and mode III of the VIV response with maximum reduction of up to 97.8\% for $\phi = 60^\circ$. Interestingly, thicker trip wires ($k/d > 1.25 \times 10^{-2}$) were more effective in mode I, but showed a galloping response for higher reduced velocities.

1This work is supported by Australian Research Council Discovery Grants: DP150102879 and DP170100275
2Membership Pending

Anchal Sareen
University of Minnesota

Date submitted: 31 Jul 2019

Electronic form version 1.4