Abstract Submitted for the DFD19 Meeting of The American Physical Society

Turbulent Flow Simulations with the Julia Programming Language MANUEL F. SCHMID, University of British Columbia, MARCO G. GIOMETTO, Columbia University, MARC B. PARLANGE, Monash University — In turbulent flow simulations, there is little room for computational inefficiency. The resolution of a simulation and its time to completion are often limiting factors for the problems that can be studied numerically. At the same time, problem-specific extensions to the simulation code are often necessary. The Julia programming language promises to enable quick, iterative development in a friendly, high-level language while achieving a performance comparable to Fortran and C. We present a new code for direct numerical simulation of turbulent channel flows written in Julia, scaling to thousands of CPU cores. We compare its performance to a Fortran code with the same numerical approach and discuss advantages and drawbacks of the new code.

> Manuel F. Schmid University of British Columbia

Date submitted: 31 Jul 2019

Electronic form version 1.4