Abstract Submitted
for the DFD19 Meeting of
The American Physical Society

Numerical investigation of heat transfer induced by an oscillatory flow within a thermoacoustic engine core\(^1\) KAZUTO KUZU, SHINYA HASEGAWA, Tokai University — Quantification of heat transfer phenomena in a thermoacoustic engine is a key to the successful improvements in the engine performance. From this point of view, Piccolo and Pistone (Int. J. Heat Mass Tran. 49 (2006), pp. 1631-1642) presented a computational method for heat transfer analysis of the thermoacoustic engine. In their method, a time-averaged energy conservation equation is solved for the acoustic field fixed at thermoacoustic engine core, and for simplification, the acoustic field was assumed to be a standing wave. However, the actual thermoacoustic device is often designed so that a travelling wave could be achieved at the engine core part, and furthermore, there are interactions between gas motion and temperature field. The present study proposes a computational model which can consider such interactions and travelling wave. In this model, both the Rott’s acoustic approximation equation (Thermoacoustics, ASA Press, pp.102) and the time-averaged energy conservation law are simultaneously solved in two-dimensional space. From the results, heat transfer within a thermoacoustic engine core is discussed.

\(^1\)Financial support by JST/ALCA(Advanced Low CarbonTechnology Research and Development Program: Grant number JPMJAL1305)