Some notes on eddy viscosity in wall-bounded turbulent bubbly flows

TIAN MA, Duke University, Department of Civil Environmental Engineering, YIXIANG LIAO, DIRK LUCAS, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, ANDREW BRAGG, Duke University, Department of Civil Environmental Engineering, HELMHOLTZ-ZENTRUM DRESDEN-ROSENDORF, INSTITUTE OF FLUID DYNAMICS TEAM, DUKE UNIVERSITY, DEPARTMENT OF CIVIL ENVIRONMENTAL ENGINEERING TEAM — Recently, based on data from DNS, Ma et al. (Phys. Rev.Fluids 2, 034301, 2017) proposed a model for closing the bubble-induced turbulence (BIT) in a typical Euler-Euler two-equation model, which appears to yield improved performance for predicting k and ε over the previous models. The present study departures from this BIT model and purpose to use the same DNS data to investigate the behavior of the C_μ constant and standard eddy viscosity definition. It can be shown that C_μ constant computed using the DNS database has a very different behavior than that in single-phase flow. Checking closely, the deficiency originates from the description of the standard eddy viscosity that is intrinsic to this general hierarchy of Euler-Euler $k-\varepsilon$ type model, hence, cannot be overcome by a more complex correction function for C_μ. Departing from this point, a modification to the definition of the eddy viscosity in bubbly flows is derived for the Euler-Euler two-equation models. We focus on the intermediate region – a region extended from the core region, where bubble-induced production and dissipation are nearly in balance, and find that the modified model can lead to significantly improved predictions for the mean liquid, when compared with DNS data.

Tian Ma
Duke University, Department of Civil Environmental Engineering

Date submitted: 01 Aug 2019

Electronic form version 1.4