Reconstructing the piecewise-smooth solution of ordinary differential equations for Chebyshev-collocation solution with pointwise exponential convergence

SANDEEP SAHA, SUDIPTA RAY, Department of Aerospace Engineering, Indian Institute of Technology — Physical problems with interfacial discontinuity in the solution or material property are characterized by piecewise-smooth solutions. Numerical computation of problems with interfacial discontinuity requires accurate resolution of the interface conditions. For finite-order methods, the problem may be resolved with local corrections near the interface. Application of spectral methods to approximate the piecewise-smooth solution without an accurate implementation of interface conditions, however, results in the Gibbs phenomenon and non-convergent numerical solution. In order to overcome the Gibbs phenomenon, the discontinuous solution is expressed as the sum of a smooth function and a modified Heaviside function at the location of the discontinuity. The unit Heaviside step function is modified with a smooth jump function which exactly satisfies the conditions of discontinuity at the interface. A weak form expansion of the jump function that uses interface conditions upto the first derivative for a second-order ordinary differential equation is proposed. Implementation of a Chebyshev-collocation discretization to problems where the discontinuities in the solution are known in analytic form produces numerical solution that converges exponentially in the maximum norm.

Sudipta Ray
Department of Aerospace Engineering, Indian Institute of Technology

Date submitted: 01 Aug 2019 Electronic form version 1.4