Abstract Submitted for the DFD19 Meeting of The American Physical Society

 CO_2 sequestration via pressure driven displacement experiments on fluid-gas plugs in a capillary tube SRAVYA SASETTY, THOMAS WARD, Iowa State University — This talk focuses on experiments conducted to further our understanding on the feasibility of carbon sequestration using a chemical reaction between CO_2 gas and aqueous $Ca(OH)_2$ which produces $CaCO_3$ precipitates. Experiments were performed in a capillary tube (dia $\approx 800 \ \mu m$) by displacing liquid plugs of different volumes containing $Ca(OH)_2$ (0 $\leq c \leq 20$ mol m⁻³) dissolved in aqueous glycerol solution using CO_2 gas at pressures 0.2 psig $\leq P \leq 1.0$ psig. A CCD camera captured the displaced and displacing fluid interfaces and an inhouse MATLAB code was used to measure both the mean U_m and tip U_t velocities. Subsequently, we measure the film thickness using the expression $m = 1 - U_m/U_t$ where m is a measure of displaced fluid still remaining inside the tube. Surface tension values obtained using an in-house pendant drop tensiometer were used to calculate the capillary number Ca. We report the m versus Ca trends observed in our experiments and compare them against immiscible fluid displacement classical results.

> Sravya Sasetty Iowa State University

Date submitted: 01 Aug 2019 Electronic form version 1.4