Effect of Objective Function on Sparse Sensor Placement using Greedy Method

KUMI NAKAI, KEIGO YAMADA, TAKAYUKI NAGATA, YUJI SAITO, TAKU NONOMURA, Tohoku University — In the present study, the objective functions based on D-optimal, A-optimal, and E-optimal criteria of optimal design are adopted to the data-driven sparse sensor selection using the greedy method. The D-, A-, and E-optimal design maximizes the determinant, minimizes the trace of inverse, and maximizes the minimum eigenvalue of the Fisher information matrix, respectively. The greedy methods based on D-, A-, and E-optimality are applied to a random sensor problem, and computational results are compared. In terms of the determinant and trace of the inverse, the sensors selected by the D-optimality objective function works better than those by A- and E-optimality. On the other hand, in terms of the minimum eigenvalue, those by A-optimality works the best and those by E-optimality works better than those by D-optimality. Furthermore, the climate datasets of the National Oceanic and Atmospheric Administration (NOAA) are reconstructed using the sensors selected by the D-, A-, and E-optimality-based greedy methods. The results indicate that the greedy method based on D-optimality is the most suitable for high accurate reconstruction with low computational cost in the case of training datasets are the same as test datasets.

1This work is supported by JST CREST Grant Number JPMJCR1763, Japan.