Abstract Submitted
for the DFD20 Meeting of
The American Physical Society

Finite amplitude, axisymmetric, capillary waves in a cylindrical container

LOHIT KAYAL, SASWATA BASAK, RATUL DASGUPTA, Indian Institute of Technology Bombay — We obtain the solution to the initial value problem for a surface perturbation on a deep pool of liquid contained in a cylindrical container. The solution is formulated as a perturbative expansion up to third order in the wave steepness parameter a_0k. The initial surface perturbation is chosen to be an axisymmetric Bessel function i.e. $(r, 0) = a_0J_0(kr)$ with k sufficiently large for gravity to be negligible. We solve the nonlinear initial-value problem under the inviscid, irrotational approximation using the Lindstedt-Poincare technique and the Dini series, solving the resultant equations up to $O(3)$, accounting for surface tension. The resultant expression for the time evolution of the interface (r, t) is compared against numerical solutions to the incompressible Euler equation. We compare these results to those obtained recently from a second order expansion, where both capillary and gravity effects are taken into account (Basak, Farsoiya and Dasgupta, 2020, under review; https://gfm.aps.org/meetings/dfd-2019/5d764521199e4c429a9b2bd). The differences between the finite amplitude capillary wave and the capillary-gravity wave will be highlighted.

We thank Department of Science and Technology, DST-SERB grant EMR/2016/000830 and MPR/2019/001240 and Prime Minister Research Fellowship (PMRF), Govt. India for funding support.

Lohit Kayal
Indian Institute of Technology Bombay

Date submitted: 03 Aug 2020
Electronic form version 1.4