Effects of Dilution on Multi-component Drying Droplets
ANUSUYA PAL, GERMANO IANNACCHIONE, Worcester Polytechnic Institute — Bio-colloidal systems exhibit a variety of structural and functional complexity due to their ability to interact between different components. Understanding the multi-component self-assembling system, such as blood, is crucial for designing self-assembled structures with a multidisciplinary impact. This paper presents an experimental investigation that explores the whole human blood by a more in-depth understanding of the drying process involved under different dilution conditions with de-ionized water. Our results show that textural image parameters could characterize the drying stages. The parameters are acquired from the distribution of the pixel values, and their inter-spatial arrangements reveal the complexity, heterogeneity, and smoothness of the drying droplets. Consequently, a decrease in the initial blood concentration results in the disappearance of a late time feature in the contact angle dynamics. This transition is also evident in the dried morphology, where the crack width and spacing exhibit a change in their slope values. A combination of optical and scanning electron microscopy confirms how the dilution changes the initial native state by reducing the interaction between the constituent particles and minimizing their biological activities.

Anusuya Pal
Worcester Polytechnic Institute

Date submitted: 03 Aug 2020

Electronic form version 1.4