Abstract Submitted for the DFD20 Meeting of The American Physical Society

Solution to the Nemchinov-Dyson Problem in 2-D Axial Geometry¹ JESSE GIRON², SCOTT RAMSEY, ROY BATY, Los Alamos National Laboratory — The purpose of this work is to examine the solutions to the 2-D inviscid compressible flow (Euler) equations in axial geometry subject to an ideal gas equation of state (EOS) constrained by the Nemchinov-Dyson assumption on the included velocity field. Assuming a separable solution for the flow velocities u_r and u_z which is defined as a linear spatial component and an arbitrary time function $R_r(t)$ and $R_z(t)$, respectively, we find we find several solution sets for density (ρ) , pressure (P), and specific internal energy (SIE) (I) that are constrained by two ordinary differential equations and arbitrary spatial dependence. These spatial functions are defined as $\Pi(\xi,\eta)$, $\beta(\xi,\eta)$, $\Upsilon(\xi,\eta)$ for ρ , P, and I, respectively, for similarity variables $\xi = r/R_r(t)$ and $\eta = z/R_z(t)$. Using various physically-relevant initial conditions, we find 11 unique numerical solutions to the functional form of $R_r(t)$ and $R_z(t)$. Using different initial density profiles, with assumptions connecting back to uniform thermodynamic properties, we derive specific unique spatial functions for ρ , P, and I. Finally, we show the overall solutions to ρ , P, and I.

Jesse Giron Los Alamos National Laboratory

Date submitted: 14 Aug 2020 Electronic form version 1.4

 $^{^{1}}$ DOE (contract number 89233218CNA000001)

²Also affiliated with: Arizona State University