Abstract for an Invited Paper for the DNP06 Meeting of The American Physical Society

Observation of unique radioactivity in spinning silver IVAN MUKHA, University of Seville, Spain

Radioactivity or spontaneous decay of atomic nuclei has been much studied ever since Becquerel discovered natural radioactivity in 1896. For proton-rich nuclei, one- and two-proton radioactivity were predicted in 1960 [1], with the former observed in 1982 [2]. Two-proton radioactivity has also recently been detected, e. g. by experimentally studying the decay of Fe-45 [3, 4], but identification of two protons is missing from these experiments. We have measured proton-proton correlations in two-proton radioactivity of the high-spin isomer (21+) in Ag-94 [5] which is also known to undergo one-proton decay [6] thus making the unique nuclear decay case. Striking 2p decay features are the proton-proton energy correlations and the unexpectedly large decay probability. These data can only be interpreted in a meaningful way by assuming simultaneous two-proton emission. Our results exclude sequential emission of protons via the intermediate nucleus Pd-93. The two-proton decay pattern can be explained by assuming that the parent nucleus is strongly cigar-like (prolate) deformed emitting the protons either from the same or from opposite ends of the cigar. This first measurement of correlations in 2p radioactivity, the nuclear-structure implications and plans for further experimental and theoretical studies of the properties of this truly exotic isomer will be presented. [1] Goldansky, V.I., Nucl. Phys. 19, 482 (1960). [2] Hofmann, S. et al., Z. Phys. A 305, 111 (1982). [3] Pfutzner, M. et al., Eur. Phys. J. A 14, 279 (2002). [4] Giovinazzo, J. et al., Phys. Rev. Lett. 89, 102501 (2002). [5] I. Mukha et al., Nature 479, 298 (2006). [6] I. Mukha et al., Phys. Rev. Lett. 95, 022501 (2005).