Abstract Submitted for the DNP06 Meeting of The American Physical Society

A Study of the ${}^{13}C(\alpha,n)$ Reaction Rate Through the ANC Technique ERIC JOHNSON, GRIGORY ROGACHEV, LAGY BABY, WARREN CLUFF, AMY CRISP, ERIC DIFFENDERFER, BERT GREEN, TRISHA HIN-NERS, CALEM HOFFMAN, KIRBY KEMPER, OLEXANDER MOMOTYUK. PATRICK PEPLOWSKI, AKIS PIPIDIS, ROB REYNOLDS, BRIAN ROEDER, Florida State University, AKRAM MUKHAMEDZHANOV, V. GOL'DBERG, Texas A&M University, SIMON BROWN, The University of Surrey — The ${}^{13}C(\alpha,n)$ reaction is the main source of neutrons for the s-process. Currently the adopted rate has an uncertainty of $\sim 300\%$ [C. Angulo et al., Nucl. Phys. A656, 3 (1999)] at the relevant stellar temperatures ($\sim 10^8$ K). This leads to a large uncertainty in the modeling of AGB stars, which is where the s-process occurs. Recently, we measured the ANC of the $1/2^+$, 6.356 MeV, near threshold state in 1^7 O. This was done via the α -transfer reaction {}^{13}C({}^{6}Li,d){}^{17}O({}^{1/2}+, 6.356) at sub-Coulomb energies. Using this information we were able to calculate the contribution of the $1/2^+$ state to the astrophysical S-factor. From our S-factor curve we calculated that the ${}^{13}C(\alpha,n)$ reaction rate is reduced by a factor of 3, also the associated uncertainty is improved to $\sim 15\%$ [E.D. Johnson et al., currently under review with PRL].

> Eric Johnson Florida State University

Date submitted: 19 Jun 2006

Electronic form version 1.4