Abstract Submitted for the DNP06 Meeting of The American Physical Society

Four-, Six- and Eight-quasiparticle Isomers in ¹⁷⁴Lu F.G. KONDEV, I. AHMAD, M.P. CARPENTER, R.V.F. JANSSENS, T. LAURITSEN, C.J. LIS-TER, D. SEWERYNIAK, Argonne National Laboratory, G.D. DRACOULIS, G.J. LANE, A.P. BYRNE, T. KIBEDI, Australian National University, P. CHOWD-HURY, S.K. TANDEL, University of Massachusetts Lowell — We report on new studies of ¹⁷⁴Lu using a ¹³⁶Xe beam from the ATLAS accelerator at Argonne National Laboratory that was incident on targets of natural Lu and enriched (to 47%) ¹⁷⁶Lu. The targets were 6 mg/cm² in thickness with 25 mg/cm² of Au backing. The beam was pulsed approximately $1 \text{ ns on}/825 \text{ ns off at energies of 6 MeV per$ nucleon. The recoils were stopped at the target position in the focus of the Gammasphere spectrometer, comprised for this experiment of 96 Compton-suppressed Ge detectors. Several high-K isomers were discovered in ¹⁷⁴Lu and their structure characterized, including $K^{\pi}=13^+$ ($\tau=280$ (25) ns), 14^- ($\tau=55$ (6) ns), (21^+) ($\tau=140$ (15) ns) and (26⁻) (τ =350 (28) ns). The 13⁺ isomer was found to decay to both low-K $(K^{\pi}=0^{+})$ and high-K $(K^{\pi}=7^{+})$ states originating from couplings of the π 7/2[404] and $\nu 7/2[633]$ orbitals. The path via the $K^{\pi}=0^+$ band cannot be explained through conventional Coriolis mixings and the accidental mixing scenario between the isomer and a nearby collective level was invoked [1]. Details of these measurements will be presented, together with a comparison with predictions from multi-quasiparticle calculations.

[1] G.D. Dracoulis et al., submitted to Phys. Rev. Lett.

Filip Kondev Argonne National Laboratory

Date submitted: 20 Jun 2006

Electronic form version 1.4