Cross section measurements of $^9\text{Be}(\alpha, n)^{12}\text{C}$ Z. HEINEN, A. ADEKOLA, C.R. BRUNE, S.M. GRIMES, H. HADIZADEH, M.J. HORNISH, T.N. MASSEY, C. MATEI, A. VOINOV, Ohio University — The $^9\text{Be}(\alpha, n)^{12}\text{C}$ reaction has a large cross section and hence is useful in applications as a neutron source. This reaction is also a key step in the formation of ^{12}C in neutron-rich environments, such as the ejecta of type-II supernovae. Using the 4.5-MV tandem accelerator at Ohio University, the differential cross section of $^9\text{Be}(\alpha, n)^{12}\text{C}$ has been measured for an incident energy of $E_\alpha = 4.5$ MeV. The time-of-flight method was used with a flight path of 30 m. A 15-μm-thick target of ^9Be was used. This thickness yielded broad peaks in the neutron energy spectra which allowed the energy dependence of the cross section to be inferred for $2 \leq E_\alpha \leq 4.5$ MeV. Using a beam swinger apparatus, neutrons were detected at laboratory angles of 0°, 15°, 35°, 40°, 60°, 88°, 110°, 120°, 130°, and 145°. Neutrons associated with the ground state and the first two excited states of ^{12}C were measured. I will present the cross section data and discuss its implications.