Abstract Submitted for the DNP06 Meeting of The American Physical Society

Low spin structure of ${}^{94}_{40}$ Zr from (n,n' γ) measurements¹ E. EL-HAMI, J.N. ORCE, S. MUKHOPADHYAY, S.N. CHOUDRY, M. SCHECK, M.T. MCELLISTREM, S.W. YATES, University of Kentucky — Recent measurements of negative g-factors for the 2_1^+ and 4_1^+ states in 92 Zr and 94 Zr have established the dominant role of $2d_{5/2}$ neutron configurations between the N=50 closed shell and the N=56 subshell closure. Moreover, further studies of mixed-symmety (MS) states in 92 Zr supported a weaker p-n interaction for the 2^+_2 MS state, as compared with the 2^+_3 MS state in $\frac{94}{42}$ Mo, which results in a partial decoupling of proton and neutron excitations. The strong M1 transition with B(M1)=0.37(4) μ_N^2 connecting the 2 lowest 2^+ states indicates, however, that both proton and neutron configurations are still important parts of their wavefunctions. Following the previous discussion, we have analysed the low-lying structure of ⁹⁴Zr at the University of Kentucky. The nuclide was studied through the $(n,n'\gamma)$ reaction at energies of 2.3, 2.8 and 3.5 MeV. A 98% enriched 94 Zr sample was used and angular distribution information yields to the measurement of branching and mixing ratios of γ -ray transitions, and determination of level lifetimes and transition strengths. For the purpose of this work, only the results for the 2.3 MeV data will be presented.

¹This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-0354656.

> Esmat Elhami University of Kentucky

Date submitted: 26 Jun 2006

Electronic form version 1.4