Abstract Submitted for the DNP06 Meeting of The American Physical Society

The fusion of 9,11 Li with 70 Zn¹ WALTER LOVELAND, RADHIKA NAIK, JAMES NEEWAY, PETER SPRUNGER, A.M. VINODKUMAR, Oregon State University, MICHAEL TRINCZEK, MARIK DOMBSKY, PETER MACHULE, D. OTTEWELL, TRIUMF, DAVID CROSS, K. GAGNON, W.J. MILLS, Simon Fraser University — The fusion of 9,11 Li with 70 Zn was studied at the ISAC1 facility at TRIUMF. Beams of 9 Li (11-14.5 MeV) struck $\approx 1 \text{ mg/cm}^{2}$ 70 Zn targets in an evacuated scattering chamber. Beam intensities were monitored by measuring elastic scattering and by the use of a Faraday cup for 9 Li while the 11 Li beam intensities were 5 x 10⁶ particle/s while the 11 Li intensities were 800 particles/s. As and Ge evaporation residues were assayed using gamma and beta spectroscopy following post-irradiation chemical separation from the irradiated targets. A seven point excitation function for the 9 Li + 70 Zn reaction was measured and compared to coupled channels calculations. Due to the low 11 Li beam intensity, only upper limits for fusion of $\approx 2b$ could be established for 11 Li.

¹This work was supported in part by the USDOE under Grant DE-FG06-97ER41027.

Walter Loveland Oregon State University

Date submitted: 27 Jun 2006

Electronic form version 1.4