Abstract Submitted for the DNP06 Meeting of The American Physical Society

Differential cross sections for ${}^{13}C(\alpha,n){}^{16}O$ reaction¹ CYNTHIA WOOD, UNC and TUNL, BRUNO BRAIZINHA, HUGON KARWOWSKI, MARY KIDD, Duke and TUNL, WERNER TORNOW — The reaction ${}^{13}C(\alpha,n){}^{16}O$ is the major source of correlated background in the prompt energy spectrum obtained at KamLAND¹. The source of α -particles is the decay of ${}^{210}Po$. In the α -particle energy range from 2.5 and 5.4 MeV there are more than 20 resonances present in the (α,n) excitation function. To reduce the uncertainties, a high precision measurement of the differential cross section data for ${}^{13}C(\alpha,n)$ was made. The α -particle beam was produced at the TUNL Tandem accelerator and directed onto self-supporting 100 to 200 μ g/cm² thick ${}^{13}C$ targets. Outgoing neutrons were detected in eight LS detectors placed at lab angles between 23° and 150° and identified by pulse shape discrimination. The differential cross section data will be presented and normalization techniques will be discussed.

¹Work supported in part by the US DOE under grant #'s DE-FG02-97ER41041 and DE-FG02-97ER41231.

Cynthia Wood UNC and TUNL

Date submitted: 30 Jun 2006

Electronic form version 1.4