First experimental constraints on the interference of $\frac{3}{2}^+$ resonances in the 18F(p,α)15O reaction

K.Y. CHAE, Univ. of TN, D.W. BADAYAN, J.C. BLACKMON, M.S. SMITH, ORNL, M.W. GUIDRY, C.D. NE-SARAJA, Univ. of TN, ORNL, D. GREGORY, R.L. KOZUB, S. PAULUSKAS, J.F. SHRINER JR., N. SMITH, TN Tech Univ., M.S. JOHNSON, ORAU, R.J. LIVESAY, M. PORTER-PEDEN, CO School of Mines, Z. MA, Univ. of TN, S.D. PAIN, J.S. THOMAS, Rutgers Univ. — The 18F(p,α)15O reaction plays a crucial role in understanding γ-ray emission from novae. Because of the importance of understanding the 18F + p reactions, a number of studies of the A=19 isobars have been made using stable and exotic beams. The interference effects among $J^\pi = \frac{3}{2}^+$ resonances in the 18F + p system, however, have never been measured, but they can change the S-factor by a factor of 20 at nova energies. R-matrix calculations indicate that the cross sections above the $E_{c.m.} = 665$ keV resonance are sensitive to the interference between the $E_{c.m.} = 8, 38$, and 665 keV resonances. In order to study the interference effects, an excitation function for the 1H(18F,α)15O reaction has been measured in the energy range of $E_{c.m.} = 663$-877 keV using radioactive 18F beams at the Holifield Radioactive Ion Beam Facility. By measuring the 18F(p,α)15O cross section off resonance and comparing the cross section with theoretical calculations, we could provide the first experimental constraints on the interference of $\frac{3}{2}^+$ resonances.

1ORNL is managed by UT-Battelle for the US DOE.

K. Y. Chae
University of Tennessee

Date submitted: 29 Jun 2006