Lifetime spectroscopy of 112Cd via the $(n,n'\gamma)$ reaction

P.E. GARRETT, K.L. GREEN, University of Guelph, H. LEHMANN, University of Fribourg, J. JOLIE, University of Koeln, C.A. MCGRATH, MINFANG YEH, S.W. YATES, University of Kentucky — Lifetimes of many levels up to 4 MeV in 112Cd have been measured using the Doppler shift attenuation technique following neutron inelastic scattering with monoenergetic neutrons. Using these lifetimes, reduced transition matrix elements are determined. The electromagnetic properties of 112Cd are outlined, and together with results from previous studies, levels are interpreted in terms of single-particle configurations and collective excitations. The separate roles of proton and neutron excitations in a subset of excited states are determined by combining the ground state electromagnetic transition rates with the hadronic transition rates. The collective states and their γ-ray decays are compared with IBM-2 model calculations that allow for the mixing between the normal phonon states and intruder configurations.

Paul Garrett
University of Guelph

Date submitted: 30 Jun 2006

Electronic form version 1.4