Abstract Submitted for the DNP06 Meeting of The American Physical Society

Results for the Cross Section of the Reaction ${}^{12}C(n,n'\gamma){}^{12}C^*$ (4.44 MeV) at $E_n = 6.20$ and 6.34 MeV using Gamma Ray Detection¹ M.F. KIDD, J.H. ESTERLINE, B. FALLIN, A. HUTCHESON, A.P. TONCHEV, W. TORNOW, Duke University and TUNL, J.H. KELLEY, North Carolina State University and TUNL — The $\bar{\nu}$ energy spectrum measured by KamLAND is contaminated with background events which are a result of the neutrons from the ${}^{13}C(\alpha,n){}^{16}O$ reaction. Because the energy range of these neutrons reaches $E_n =$ 7.3 MeV, the inelastic scattering off 12 C to the 2⁺ first excited state at 4.44 MeV can occur in the liquid scintillator for E_n exceeding 4.85 MeV. The neutron from the inelastic scattering is indistinguishable from the neutron of interest in the antineutrino detection process $\bar{\nu} + p \rightarrow e^+ + n$, and the subsequent γ from the deexcitation mimics the positron. Using the Shielded Neutron Source at TUNL with a gamma ray detection setup, we have measured the differential gamma-ray production cross section for this reaction. Clover detectors were placed 62° , 90° , and 135° from the incident pulsed neutron beam direction at distances of 9.75 cm, 5.7 cm, and 9.2 cm respectively from a 0.75" diameter by 1.0" high graphite cylinder. The differential cross section was measured at neutron energies of 6.20 and 6.34 MeV with an energy spread of 0.14 MeV.

¹Work supported by U.S. DOE under contract numberss DE-FG02-97ER41033, DE-FG02-03ER41231, and DE-FG02-97ER41042.

Mary Kidd Duke University and TUNL

Date submitted: 27 Jul 2006

Electronic form version 1.4