Abstract Submitted
for the DNP06 Meeting of The American Physical Society

Coincidence Geometry Measurements of the ${ }^{1} \mathbf{S}_{0}$ Scattering Lengths in Neutron-Deuteron Breakup at $19 \mathrm{MeV}^{1}$ A.S. CROWELL, J. DENG, J.H. ESTERLINE, C.R. HOWELL, M.R. KISER, R.A. MACRI, S. TAJIMA, W. TORNOW, Duke University and TUNL, B.J. CROWE III, North Carolina Central University, R.S. PEDRONI, North Carolina A\&T State University, W. VON WITSCH, University of Bonn, H. WITAŁA, Jagellonian University - Measurements of the ${ }^{1} \mathrm{~S}_{0}$ neutron-neutron ($n n$) and neutron-proton ($n p$) scattering lengths, $a_{n n}$ and $a_{n p}$ respectively, using neutron-induced deuteron breakup were made at Triangle Universities Nuclear Laboratory (TUNL) at an incident neutron energy of 19.0 MeV . Six liquid scintillator detectors were configured in a coincidence geometry to measure the momenta of the two neutrons in two $n n$ and $n p$ final-state-interaction (FSI) pairs while the energy of the proton was determined using a $\mathrm{C}_{6} \mathrm{D}_{12}$ active target. The scattering lengths were extracted from the experimental cross sections by comparison to rigorous three-nucleon calculations using the CD Bonn nucleon-nucleon potential for various values of $a_{n n}$ and $a_{n p}$. In this talk results from the two $n n$ and $n p$ FSI measurements and the analysis to obtain $a_{n n}$ will be presented.
${ }^{1}$ This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033.

Alexander Crowell
Duke University and TUNL

