Abstract Submitted for the DNP06 Meeting of The American Physical Society

Centrality dependence of the $N(\Omega)/N(\phi)$ ratios and ϕ anisotropic flow SARAH BLYTH, Lawrence Berkeley National Laboratory / University of Cape Town, STAR COLLABORATION — Due to its long lifetime and relatively small hadronic interaction cross-section, the ϕ -meson is a clean probe for studying the properties of the hot and dense medium created in high-energy nuclear collisions. We present the first results of the centrality dependence of the $N(\Omega)/N(\phi)$ ratios and ϕ anisotropic flow (v_2) from $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions measured by STAR at RHIC. In more central collisions, the eccentricity-scaled anisotropic flow (v_2/ϵ) is large, indicating a stronger collective expansion at the early partonic stage. For $p_T > 2$ GeV/c, the v_2 values are consistent with the v_2 values of other mesons, and expectations from parton recombination models. In addition, the $N(\Omega)/N(\phi)$ ratio is found to increase linearly as a function of p_T , a characteristic of coalescence of thermal quarks for both ϕ and Ω . In the most central collisions, the linear increase reaches up to $p_T \sim 4$ GeV/c implying that most of the multistrange hadrons are formed directly from thermalized s-quarks in Au+Au collisions at RHIC.

> Sarah Blyth Lawrence Berkeley National Laboratory / University of Cape Town

Date submitted: 30 Jun 2006

Electronic form version 1.4