Production of light neutron-rich nuclei in fusion-evaporation reactions¹ M. WIEDEKING, P. FALLON, A.O. MACCHIAVELLI, L.W. PHAIR, D.L. BLEUEL, R.M. CLARK, M. CROMAZ, M-A. DELEPLANQUE, J.D. GIBELIN, I-Y. LEE, L.G. MORETTO, E. RODRIGUEZ-VIEITEZ, D. WARD, LBNL, Berkeley, CA 94720, L.A. BERNSTEIN, J.T. BURKE, B.F. LYLES, LLNL, Livermore, CA 94550 — I will discuss our work to extend the experimental data on light neutron-rich nuclei and present new results on 18N ($Z=7$), which is sufficiently far from stability to exhibit modified shell structure, yet still within the reach of stable beam facilities. 18N was produced using the 9Be(11B,2p)18N fusion reaction at LBNL’s 88-Inch Cyclotron and studied using STARS-LIBERACE, a large area segmented silicon ΔE-E detector telescope and six HPGe “Compton Suppressed” Clover detectors. Previous information on the excited states of 18N came from 18C beta-decay and charge-exchange reactions only. A key aspect of the current measurement was to use the 2-proton evaporation reaction channel. The large Q-value and the chosen beam energy (50 MeV) suppressed the evaporation of additional neutrons, with the result that a 2p “gate” uniquely selected the 18N products.

¹Supported by the U.S. DoE, LBNL Contract No. DE-AC02-05CH11231 and LLNL Contract No. W-7405-Eng-48.