A prototype, high-efficiency, position sensitive neutron detector for the proposed neutron spin rotation experiment at the SNS
D.M. MARKOFF, NC Central University, V. CIANCILO, C.L. BRITTON, R.G. COOPER, R.J. WARMACK, ORNL — We are developing a position sensitive (∼1 cm resolution) neutron detector with nearly 100% efficiency for use at the high flux (> 5 × 10^{10} neutrons/sec) pulsed beam at the Oak Ridge Spallation Neutron Source (SNS). The prototype detector is important for transmission experiments such as the proposed parity-violating neutron spin rotation in hydrogen measurement. The detector concept integrates the segmented ³He ionization chamber designed for the preliminary spin-rotation in helium experiment\(^1\) and the position sensitive, charged particle collection technology currently being developed at ORNL for low-efficiency beam-transmission monitors for the SNS\(^2\). Neutron absorption on ³He produces \(^1\)H and \(^3\)H that pass through a wire grid producing an \(e^-\) shower detected in current mode by wire strips mounted on a substrate. For 100% efficiency, regions are created with a series of high-voltage plates, grids, and wire strips each strategically located along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. We will present our prototype model and test results.

\(^1\)S.D. Penn \textit{et al.}, Nucl. Instr. and Meth. \textbf{457} 332 (2001)

Diane Markoff
NC Central University

Date submitted: 01 Jul 2006