Low Energy Nuclear Reactions Explained by Nuclear Oscillation—The End of Tunnelling

STEWART BREKKE, Northeastern Illinois University

— Low energy nuclear reactions can be explained through a nuclear oscillation factor using classical mechanics eliminating the need for a tunnelling explanation. Consider an incoming positive charge approaching vibrating nucleus. If the amplitudes of oscillating are equal in all directions and x the position of the incoming charge to the nucleus, then the position of the particle is \(r = \left[(x + A \cos X)^2 + (A \cos Y)^2 + (A \cos Z)^2 \right]^{1/2} \). Then KE needed = Barrier Height = \(kQ(n)q(i)/[(x + A \cos X)^2 + (A \cos Y)^2 + (A \cos Z)^2]^{1/2} \). If the nuclear reaction takes place on the x-axis and contact with the nuclear surface is considered to be contact with the nuclear well, \(x = A \cos X \), the magnitude for \(r \) after collecting terms is \(r = [4(A \cos X)^2 + (A \cos Y)^2 + (A \cos Z)^2]^{1/2} \). The KE needed to mount the barrier height is \(KE = kQ(n)q(i)/(4(A \cos X)^2 + (A \cos Y)^2 + (A \cos Z)^2]^{1/2} \). If the maximum for all \(\cos \) values is +1 and for all minimum values is -1, \(r = (6)^{1/2}A \). And average \(\cos \) value is \(\text{RMS cos} = \left(\frac{1}{2} \right)^{1/2} \), \(r = (3)^{1/2}A \). For a static nucleus \(r = 0 \). The barrier height minimum is \(KE = kQ(n)q(i)/(6)^{1/2}A \), maximum \(KE = kQ(n)q(i)/0 \) and average \(KE = k(q(n)q(i)/(3)^{1/2}A \). Therefore the Coulomb barrier is different at different times accounting classically for all nuclear reactions.

Stewart Brekke
Northeastern Illinois University

Date submitted: 06 Jul 2006

Electronic form version 1.4