Abstract Submitted for the DNP06 Meeting of The American Physical Society

Low Energy Nuclear Reactions Explained by Nuclear Oscillation-The End of Tunnelling STEWART BREKKE, Northeastern Illinois University — Low energy nuclear reactions can be explained through a nuclear oscillation factor using classical mechanics eliminating the need for a tunnelling explanation. Consider an incoming positive charge approaching vibrating nucleus. If the amplitudes of oscillating are equal in all directions and x the position of the incoming charge to the nucleus, then the position of the particle is $r = [(x + A\cos X)^2 +$ $(A\cos Y)^2 + (A\cos Z)^2$ ^{1/2}. Then KE needed = Barrier Height = kQ(n)q(i)/[(x + 1)^2]^{1/2}. $(A\cos X)^2 + (A\cos Y)^2 + (A\cos Z)^2$ ^{1/2}. If the nuclear reaction takes place on the x-axis and contact with the nuclear surface is considered to be contact with the nuclear well, $x = A\cos X$, the magnitude for r after collecting terms is $r = [4(A\cos X)^2]$ $+ (A\cos Y)^2 + (A\cos Z)^2$ ^{1/2}. The KE needed to mount the barrier height is KE $= kQ(n)q(i)/[4(AcosX)^2 + (AcosY)^2 + (AcosZ)^2]^{1/2}$. If the maximum for all cos values is +1 and for all minimum values is -1, $r = (6)^{1/2}A$. and average cos value is RMScos = $(1/2)^{1/2}$, r = $(3)^{1/2}$ A. For a static nucleus r = 0. The barrier height minimum is $KE = kQ(n)q(i)/(6)^{1/2}A$, maximum KE = kQ(n)q(i)/0 and average KE $= k(q(n)q(i)/(3)^{1/2}A$. Therefore the Coulomb barrier is different at different times accounting classically for all nuclear reactions.

> Stewart Brekke Northeastern Illinois University

Date submitted: 06 Jul 2006

Electronic form version 1.4