Measurement of the γ branches in the β^+ decay of 32Cl

DAN MELCONIAN, C. BORDEANU, A. GARCÍA, University of Washington, J.C. HARDY, V.E. IACOB, N. NICA, H.I. PARK, G. TABACARU, L. TRACHE, Texas A & M University, S. TRIAMBAK, University of Washington, R.E. TRIBBLE, Y. ZHAI, Texas A & M University — As discussed in the previous talk (A. García, et al.), one of the dominant systematic uncertainties in the measurement of the ft value of 32Ar arises from the uncertainty in the HPGe γ efficiency. The γs emitted in the decay of 32Cl cover the same range of energies and, since $\approx 10\%$ of the time it is a daughter product of 32Ar, a precise knowledge of these branches will provide us with an in situ calibration of our HPGe detectors. This talk will describe the experiment and results of the measurement performed at the Texas A & M Cyclotron Institute. We have identified a number of new branches and determined the γ yields to $< 0.3\%$, generally an order of magnitude improvement from previous results. Implications for the 32Ar experiment will be discussed.

Dan Melconian
University of Washington

Date submitted: 05 Jul 2006

Electronic form version 1.4