Abstract Submitted for the DNP06 Meeting of The American Physical Society

 \vec{n} -d Analyzing Power at $E_n = 21.0$ and 22.7 MeV JEROMY TOMP-KINS, Gordon College, M.W. AHMED, A.S. CROWELL, J.H. ESTERLINE, C.R. HOWELL, W. TORNOW, Duke University and TUNL, B.J. CROWE III, NCCU, R.S. PEDRONI, N.C. A&T University, G.J. WEISEL, PSU Altoona, I. SLAUS, Rudjer Boskovic, H. WITALA, Jagiellonian University — The $\vec{n} - d$ analyzing power $A_y(\theta)$ was measured for $E_n = 21.0$ MeV and $E_n = 22.5$ MeV. Polarized deuterons were accelerated using the TUNL FN-Tandem into a ²H gas cell to produce the incident polarized neutrons using the ${}^{2}\mathrm{H}(\vec{d},\vec{n}){}^{3}\mathrm{He}$ source reaction. We used a deuterated scintillator as the center detector in our $A_{\mu}(\theta)$ measurements and a ⁴He gas cell to determine the beam polarization. $A_{\mu}(\theta)$ values were taken at lab angles 39°, 60°, 81°, 94°, 107°, and 128°. This data addresses the long standing discrepancy between rigorous three-nucleon calculations and experimental data (3NAPP) in the unexplored neutron energy range from 19.0 to 30.0 MeV. Our results confirm the 3NAPP. They also show a sensible trend in the maxima and minima between $E_n = 19.0$ and 30.0 MeV. This suggests that the theoretical treatment of the three-nucleon systems needs revision.

Funded by the NSF (NSF-PHY-05-52723) and the DOE, Office of Nuclear Physics (DE-FG02-97ER41033).

Jeromy Tompkins Gordon College

Date submitted: 01 Aug 2006

Electronic form version 1.4