Abstract Submitted
for the DNP06 Meeting of
The American Physical Society

p-n configurations of symmetric and mixed-symmetric states M.
PERRY, WNSL Yale Univ., FSU, V. WERNER, WNSL, N. PIETRALLA, WNSL,
N. BENCZER-KOLLER, Rutgers University — The first 2^+ state in collective
even-even nuclei is a proton-neutron (pn) symmetric quadrupole excitation. It has a
mixed-symmetric counterpart, which has p-n anti-symmetric parts in the wavefunc-
tion. A strong p-n interaction mixes the proton and neutron configuration, creating
a low-lying symmetric state and a higher-lying mixed-symmetric state. The signifi-
cant energy difference between the proton and neutron $j=2$ configurations and rather
weak mixing between the proton and neutron state wavefunctions in Zr isotopes re-
sults in a 2^+_1 state with neutron dominance and a 2^+_2 state with proton dominance,
which was identified as the one-phonon mixed-symmetry 2^+ state. This signature in
Zr provides an ideal basis for studying configuration mixing. This mixing is studied
experimentally by measuring g factors. Theoretical predictions will be compared
with recent experimental results.

Michelle Perry
Florida State University

Date submitted: 31 Jul 2006
Electronic form version 1.4