Abstract Submitted for the DNP06 Meeting of The American Physical Society

Single Particle Energies in Skyrme Hartree-Fock and Woods-Saxon Potentials¹ BRIAN NEWMAN, Carnegie Mellon University — Atomic nuclei exhibit the interesting phenomenon of single-particle motion that can be described within the mean field approximation for the many-body system. We have carried out Hartree-Fock calculations for a wide range of nuclei, using the Skyrme-type interactions. We have examined the resulting mean field potentials U_{HF} by fitting $r^2 U_{HF}$ to $r^2 U_{WS}$, where U_{WS} is the commonly used Woods-Saxon potential. We consider, in particular, the asymmetry (x=(N-Z)/A) dependence in U_{WS} and the spin-orbit splitting in the spectra of of $r^{17}F_8$ and the recently measured spectra of $r^{23}F_{14}$. Using $r^{23}F_{14}$, we obtained good agreement with experimental data.

¹Department of Energy, Texas A&M Cyclotron Institute, National Science Foundation

Brian Newman Carnegie Mellon University

Date submitted: 14 Aug 2006 Electronic form version 1.4