Study of low-lying resonant states in 16F using an 15O radioactive ion beam

DONGWON LEE, LBNL, KARI PERAJARVI, STUK, Finland, JAMES POWELL, JIM O’NEIL, LBNL, DENNIS MOLTZ, University of California, Berkeley, VLADILEN GOLDBERG, Texas A&M University, JOSEPH CERNY, LBNL

— Among the $A=16$, $T=1$ isobaric triad, many states in 16O and 16N have been well established, but less has been reported about 16F. Experimental studies with stable beams have established spin-parity values for the first four low-lying states of 16F, but only upper limits or rough estimates of their level widths have been reported. The spins and parities of the low-lying states have been found to be 0^-, 1^-, 2^-, and 3^- in ascending order in energy, and are believed to have 15O core-single proton configurations of $1p_{1/2}^- 2s_{1/2}$ for the 0^-, 1^-, and $1p_{1/2}^- 1d_{5/2}$ for the 2^-, 3^-. A recently developed 15O ($T_{1/2} = 122$ sec.) radioactive ion beam from the BEARS (Berkeley Experiments with Accelerated Radioactive Species) facility was used to study the structure of 16F using 15O+p elastic scattering and the Thick Target Inverse Kinematics method on a polyethylene target. The level widths of the first four states in 16F were determined using R-matrix analysis, and our results show that the 0^- state has a level width of 22.8 ± 14.4 keV, and that the broad 1^- state has a width of 103 ± 12 keV. The level width of the 2^- state is found to be 4.0 ± 2.5 keV which is much narrower than the compiled value, while 15.1 ± 6.7 keV for the 3^- state is in good agreement with previous studies.

Dongwon Lee
LBNL

Date submitted: 25 Jun 2007

Electronic form version 1.4