Abstract Submitted for the DNP07 Meeting of The American Physical Society

Study of low-lying resonant states in ¹⁶F using an ¹⁵O radioactive ion beam DONGWON LEE, LBNL, KARI PERAJARVI, STUK, Finland, JAMES POWELL, JIM O'NEIL, LBNL, DENNIS MOLTZ, University of California, Berkeley, VLADILEN GOLDBERG, Texas A&M University, JOSEPH CERNY, LBNL — Among the A=16, T=1 isobaric triad, many states in 16 O and 16 N have been well established, but less has been reported about ¹⁶F. Experimental studies with stable beams have established spin-parity values for the first four low-lying states of ¹⁶F, but only upper limits or rough estimates of their level widths have been reported. The spins and parities of the low-lying states have been found to be 0^{-} , 1^{-} , 2^{-} , and 3^{-} in ascending order in energy, and are believed to have ${}^{15}O$ core-single proton configurations of $1p_{1/2}^{-1} 2s_{1/2}$ for the 0⁻, 1⁻, and $1p_{1/2}^{-1} 1d_{5/2}$ for the 2⁻, 3⁻. A recently developed ¹⁵O ($T_{1/2}$ = 122 sec.) radioactive ion beam from the BEARS (Berkeley Experiments with Accelerated Radioactive Species) facility was used to study the structure of ¹⁶F using ¹⁵O+p elastic scattering and the Thick Target Inverse Kinematics method on a polyethylene target. The level widths of the first four states in ¹⁶F were determined using R-matrix analysis, and our results show that the 0⁻ state has a level width of 22.8 ± 14.4 keV, and that the broad 1⁻ state has a width of 103 ± 12 keV. The level width of the 2⁻ state is found to be 4.0 ± 2.5 keV which is much narrower than the compiled value, while 15.1 ± 6.7 keV for the 3^{-} state is in good agreement with previous studies.

> Dongwon Lee LBNL

Date submitted: 25 Jun 2007

Electronic form version 1.4