Abstract Submitted for the DNP07 Meeting of The American Physical Society

Magnetic Field Finite-Element Calculations for the SNS Neutron EDM Experiment S. BALASCUTA, R. ALARCON, Arizona State University, B. FILIPPONE, B. PLASTER, R. SCHMID, California Institute of Technology, NEDM COLLABORATION — The nEDM experiment is a new search for the electric dipole moment (EDM) of the neutron with a sensitivity of 10^{-28} e-cm at the recently constructed Spallation Neutron Source (SNS). The measurement requires a static magnetic field surrounding two target cells that contain superfluid ⁴He, polarized neutrons and polarized ³He atoms. The latter are used as a co-magnetometer and ultracold neutron spin precession frequency analyzer. The applied static magnetic field, B_0 , is chosen to be about 10 mG resulting in a precession of the magnetic moments for both neutrons and ³He nuclei of ~ 30 Hz. To maintain the polarization of the neutrons and ³He atoms, the magnetic field should be very uniform with gradients of the order of 0.1 μ G/cm averaged over each cell volume. A separate requirement on the volume-averaged magnetic field gradient $\langle dB_x/dx \rangle$ in the direction of B_0 of less than 0.01 μ G/cm is necessary to minimize false EDM signals. In addition, to reduce the influence of ambient external fields an overall magnetic shielding factor of $\sim 10^5$ is required. We present finite-element calculation results for the complete nEDM static magnetic field configuration including magnetic field gradients and ³He relaxation rates.

> Ricardo Alarcon Arizona State University

Date submitted: 27 Jun 2007

Electronic form version 1.4