High-spin states in 88Kr

N. Fotiades, LANL, A.F. Lisetskiy, Arizona Univ., J.A. Cizewski, Rutgers Univ., R. Krücken, T.U. München, R.M. Clark, P. Fallon, I.Y. Lee, A.O. Macchialvelli, LBNL, J.A. Becker, W. Younes, LLNL — High-spin states in 88Kr have been studied following the fission of the 226Th compound nucleus formed in a fusion-evaporation reaction (18O at 91 MeV on 208Pb). The Gammasphere array was used to detect γ-ray coincidences. High-spin states up to spin (14+) and \sim8 MeV excitation energy have been established. The level scheme reported for 88Kr in the spontaneous fission of 248Cm [1] has been enriched and extended to higher spin and excitation energies. Differences between the level scheme reported in [1] and that obtained in the present work will be discussed. The observed experimental states are also compared with theoretical shell-model and interacting-boson-model-2 calculations. This work has been supported by the U.S. Department of Energy under Contracts No. DE-AC52-06NA25396 (LANL), W-7405-ENG-48 (LLNL) and AC03-76SF00098 (LBNL) and by the National Science Foundation (Rutgers).

Walid Younes
LLNL

Date submitted: 28 Jun 2007 Electronic form version 1.4