A precision measurement of the 3He(α,γ)7Be astrophysical S-factor

T.A.D. BROWN, K.A. SNOVER, D.W. STORM, C. BORDEANU, D. MELCONIAN, A.L. SALLASKA, S.K.L. SJUE, S. TRIAMBAK, A.M. CRISP, J.D. LOWREY, K. MICHNICKI, P. PEPLOWSKI, J. SIBILLE, University of Washington — The 3He(α,γ)7Be reaction is the gateway to the ppII and ppIII branches, providing the principle route to energetic neutrino production in the Sun. The uncertainty on the accepted value of $S(0)$ for this reaction is currently the largest important nuclear physics uncertainty (+/- 10%) in the Solar Model [1]. A more precise value of $S_{34}(0)$ would bring an improvement in solar neutrino flux calculations, and in predictions of 7Li production in Big-Bang Nucleosynthesis which are currently significantly higher than observed 7Li abundances [2]. Precision measurements of $S_{34}(E)$ have been made at eight different energies between $E_{CM} = 329$ and 1235 keV, using the terminal ion source on the Van-de-Graaff accelerator at the University of Washington. The prompt gamma-ray yield and the 7Be activity have been measured at each energy in the same irradiation, permitting two different methods for determining $S_{34}(E)$. This presentation discusses the experimental details of these measurements, the analysis of the data and our results for $S_{34}(0)$.

T. A. D. Brown
University of Washington

Date submitted: 29 Jun 2007

Electronic form version 1.4