Abstract Submitted for the DNP07 Meeting of The American Physical Society

Investigation of Removal of 3 He from Liquid 4 He Solution for the Neutron Electric Dipole Moment Measurement DAVID G. HAASE, ROBERT GOLUB, PAUL R. HUFFMAN, North Carolina State University and Triangle Universities Nuclear Laboratory — The measurement cycle for the proposed experiment to measure the neutron electric dipole moment at the SNS includes the injection and removal of polarized 3 He, which is used as a comagnetometer in the same 15 liters of superfluid 4 He which trap the ultracold neutrons. A critical part of the process is the removal of 3 He atoms at the end of data collection, reducing the 3 He concentration from 10^{-10} to 10^{-12} in a period of 100-200 seconds. It is proposed to accomplish the task via diffusion of the 3 He from the target cell to an evaporator which preferentially removes 3 He vapor. The efficiency of the process is strongly sensitive to the temperature dependent diffusion rate and vapor pressure of 3 He as well as the superfluid film flow in 4 He. We describe the design of this process and initial results from a prototype evaporator implemented at NC State University.

¹This work is supported through US Department of Energy contracts with LANL and TUNL.

David G. Haase North Carolina State University and Triangle Universities Nuclear Laboratory

Date submitted: 29 Jun 2007 Electronic form version 1.4