Investigation of Removal of 3He from Liquid 4He Solution for the Neutron Electric Dipole Moment Measurement1 DAVID G. HAASE, ROBERT GOLUB, PAUL R. HUFFMAN, North Carolina State University and Triangle Universities Nuclear Laboratory — The measurement cycle for the proposed experiment to measure the neutron electric dipole moment at the SNS includes the injection and removal of polarized 3He, which is used as a comagnetometer in the same 15 liters of superfluid 4He which trap the ultracold neutrons. A critical part of the process is the removal of 3He atoms at the end of data collection, reducing the 3He concentration from 10^{-10} to 10^{-12} in a period of 100-200 seconds. It is proposed to accomplish the task via diffusion of the 3He from the target cell to an evaporator which preferentially removes 3He vapor. The efficiency of the process is strongly sensitive to the temperature dependent diffusion rate and vapor pressure of 3He as well as the superfluid film flow in 4He. We describe the design of this process and initial results from a prototype evaporator implemented at NC State University.

1This work is supported through US Department of Energy contracts with LANL and TUNL.