Monte Carlo Simulation of Spin Relaxation due to $\vec{v} \times \vec{E}$ effect in nEDM experiment

RICCARDO SCHMID, BRAD PLASTER, BRADLEY FILIPPONE, Caltech, NEDM COLLABORATION — We have simulated the precession of spin-polarized Ultra Cold Neutrons and 3He atoms in uniform and static B and E fields and calculated the spin relaxation. The spin relaxation times T_1 (longitudinal) and T_2 (transverse) of spin-polarized UCN and 3He atoms are important considerations in the new measurements of neutron Electric Dipole Moment in the SNS nEDM experiment. The uniform E field creates a motional magnetic field due to the $\vec{v} \times \vec{E}$ effect which combines with collisions with the walls of the holding cell to produce constant variation of the total B field and result in the spin relaxation of the neutron and 3He samples. Scattering of 3He atoms in 4He also results in spin relaxation and is highly temperature dependent. In the SNS nEDM experiment the B field has magnitude of 10 mGauss. The applied E field is parallel to the B field and has a magnitude of 50 kV/cm. We have found the relaxation times for the neutron due to the $\vec{v} \times \vec{E}$ effect to be long compared to holding times and neutron lifetime. On the other hand, the $\vec{v} \times \vec{E}$ effect could be important for 3He relaxation times.

Riccardo Schmid
California Institute of Technology

Date submitted: 29 Jun 2007
Electronic form version 1.4