Abstract Submitted for the DNP07 Meeting of The American Physical Society

Monte Carlo Simulation of Spin Relaxation due to $\mathbf{v} \times \mathbf{E}$ effect in **nEDM** experiment RICCARDO SCHMID, BRAD PLASTER, BRADLEY FILIPPONE, Caltech, NEDM COLLABORATION — We have simulated the precession of spin-polarized Ultra Cold Neutrons and ³He atoms in uniform and static B and E fields and calculated the spin relaxation. The spin relaxation times T_1 (longitudinal) and T_2 (transverse) of spin-polarized UCN and ³He atoms are important considerations in the new measurements of neutron Electric Dipole Moment in the SNS nEDM experiment. The uniform E field creates a motional magnetic field due to the $\vec{v} \times \vec{E}$ effect which combines with collisions with the walls of the holding cell to produce constant variation of the total B field and result in the spin relaxation of the neutron and 3 He samples. Scattering of 3 He atoms in 4 He also results in spin relaxation and is highly temperature dependent. In the SNS nEDM experiment the B field has magnitude of 10 mGauss. The applied E field is parallel to the B field and has a magnitude of 50 kV/cm. We have found the relaxation times for the neutron due to the $\vec{v} \times \vec{E}$ effect to be long compared to holding times and neutron lifetime. On the other hand, the $\vec{v} \times \vec{E}$ effect could be important for ³He relaxation times.

> Riccardo Schmid California Institute of Technology

Date submitted: 29 Jun 2007

Electronic form version 1.4