Abstract Submitted for the DNP07 Meeting of The American Physical Society

Analysis of two-particle jet correlations with a scaling formula¹ MICHAEL TANNENBAUM, Brookhaven National Laboratory — At DNP06, a new formula for the distribution of an associated away-side particle with transverse momentum p_{T_a} , which is presumed to be a fragment of an away-jet with \hat{p}_{T_a} , triggered by a particle with transverse momentum p_{T_t} , presumably from a trigger-side jet with \hat{p}_{T_t} , was given: $dP_{p_{T_a}}/dx_E|_{p_{T_t}} \approx \frac{\langle m \rangle}{\hat{x}_h} \frac{(n-1)}{(1+x_E/\hat{x}_h)^n}$ where $x_E \approx p_{T_a}/p_{T_t}$ is the ratio of the transverse momenta of the particles, $\hat{x}_h = \hat{p}_{T_a}/\hat{p}_{T_t}$ is the ratio of the transverse momenta of the away-side to trigger-side jets, and $\langle m \rangle$ is the mean multiplicity of particles in the away jet. Many analyses of the away-jet p_{T_a} distributions in Au+Au collisions are available; but these tend to describe the effect of the medium with the variable $I_{AA}(x_E)$, the ratio of the x_E distribution in A+A collisions to that in p-p collisions, which typically shows an enhancement at low values of x_E and a suppression at higher values of x_E . Such behavior could be explained as a decrease in \hat{x}_h in A+A collisions due to energy loss of the away jet in the medium. Fits of the above formula to the available data will be presented to establish whether: a) the awayjets simply lose energy; b) some of the away-jets lose energy, others punch-through without losing energy; etc.

¹Supported by the U.S. Department of Energy, Contract No. DE-AC02-98CH1-886.

Michael Tannenbaum Brookhaven National Laboratory

Date submitted: 29 Jun 2007 Electronic form version 1.4