30,31S level structure measured via (p, t) and (p, d) reactions on 32S

D.W. BARDAYAN1, J.C. BLACKMON, W.R. HIX, J.F. LIANG, L.F. ROBERTS, M.S. SMITH, ORNL, Z. MA, U. Tenn., R.L. KOZUB, Tenn. Tech. U., K.L. JONES, J.S. THOMAS, Rutgers, R.J. LIVESAY, Col. School of Mines, R.P. FITZGERALD, D.W. VISSE, U. North Carolina — An accurate knowledge of the level structure of 30,31S above the proton threshold is important for calculating the astrophysical rates of proton capture on 29,30P respectively. These proton captures affect the Si abundances observed in meteoritic presolar grains and the reaction flow to heavier nuclei in novae. We have studied 30,31S by bombarding ZnS targets with \sim40-MeV proton beams from the Holifield Radioactive Ion Beam Facility and detecting reaction tritons and deuterons in the Silicon Detector Array (SIDAR). A total of 13(26) states were observed in 30S(31S) including 9(17) above the proton threshold. The spins of strongly-populated levels were constrained through a DWBA analysis of the measured angular distributions. The method and results will be presented.

1ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725.