Abstract Submitted for the DNP07 Meeting of The American Physical Society

 30,31 S level structure measured via (p,t) and (p,d) reactions on 32 S D.W. BARDAYAN¹, J.C. BLACKMON, W.R. HIX, J.F. LIANG, L.F. ROBERTS, M.S. SMITH, ORNL, Z. MA, U. Tenn., R.L. KOZUB, Tenn. Tech. U., K.L. JONES, J.S. THOMAS, Rutgers, R.J. LIVESAY, Col. School of Mines, R.P. FITZGERALD, D.W. VISSER, U. North Carolina — An accurate knowledge of the level structure of 30,31 S above the proton threshold is important for calculating the astrophysical rates of proton capture on 29,30 P respectively. These proton captures affect the Si abundances observed in meteoritic presolar grains and the reaction flow to heavier nulcei in novae. We have studied 30,31 S by bombarding ZnS targets with \sim 40-MeV proton beams from the Holifield Radioactive Ion Beam Facility and detecting reaction tritons and deuterons in the Silicon Detector Array (SIDAR). A total of 13 (26) states were observed in 30 S(31 S) including 9 (17) above the proton threshold. The spins of strongly-populated levels were constrained through a DWBA analysis of the measured angular distributions. The method and results will be presented.

¹ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725.

D.W. Bardayan ORNL

Date submitted: 02 Jul 2007 Electronic form version 1.4