Abstract Submitted for the DNP07 Meeting of The American Physical Society

Unbound states of the neutron-rich oxygen isotopes¹ C.R. HOFF-MAN, S.L. TABOR, FSU, M. THOENNESSEN, T. BAUMANN, D. BAZIN, A. GADE, W.A. PETERS, A. SCHILLER, MSU/NSCL, J. BROWN, WABASH, P.A. DEYOUNG, HOPE, R. HOWES, MARQUETTE, N. FRANK, B. LUTHER, CON-CORDIA, H. SCHEIT, RIKEN, J. HINNEFELD, IUSB, MONA COLLABORA-TION — The energies of the ground state decay of ²⁵O and excited states in ²⁴O were measured for the first time. From these energies the size of the N=16 shell gap may be deduced. Due to the lack of observation of an excited state in ²⁴O using γ -ray spectroscopy, along with the known unbound nature of 25 O, techniques involving neutron spectroscopy had to be applied. ²⁵O (²⁴O*) was populated via proton (proton-neutron) removal from a ²⁶F beam. Complete 4-vector reconstruction revealed resonant structures in the decay spectrum for n-²²O, n-²³O and n-²⁴O coincidence events. From the n-24O and n-23O decay spectrum the energies of the ground state of ²⁵O and first excited state of ²⁴O were measured. Using n-²²O coincident events of neutron multiplicity ≥ 2 , clear correlation between a low and high energy resonance was observed. With the known placement of the low energy resonance as the first excited state in ²³O, the high energy resonance has been attributed to an excited state in 24 O.

¹This work was supported by the US National Science Foundation.

Calem Hoffman

Date submitted: 02 Jul 2007 Electronic form version 1.4