Abstract Submitted for the DNP07 Meeting of The American Physical Society

Double Beta Decay of ¹⁵⁰Nd to Excited Final States MARY KIDD, JAMES ESTERLINE, WERNER TORNOW, TUNL - Duke University — Studying $\beta\beta$ decay with emission of neutrinos $(2\nu\beta\beta)$ in particular is important as a check for theoretical models which can be used to predict the half-lives of neutrinoless $\beta\beta$ decay $(0\nu\beta\beta)$. Results from studying $2\nu\beta\beta$ decay can aid in the search for $0\nu\beta\beta$ decay, which in turn can provide information on the fundamental properties of the neutrino. Because SNO+ and KamLAND plan to use ¹⁵⁰Nd as a nuclide in searches for $0\nu\beta\beta$ decay, our goal is to measure the $2\nu\beta\beta$ decay of ¹⁵⁰Nd to the first excited 0^+ state in ¹⁵⁰Sm. In QRPA models, the calculated matrix elements for transitions to the ground state and excited states depend in a very different way on the so-called g_{pp} parameter. Therefore, $2\nu\beta\beta$ decay data to excited states are of special interest. Such data exist only for ¹⁰⁰Mo; only tentative information is available for ¹⁵⁰Nd. Thus, we report on our preliminary studies and our plans for observing the decay of ¹⁵⁰Nd to the first excited 0 ⁺ state in ¹⁵⁰Sm by detecting the 334 keV and 406.5 keV deexcitation gamma rays in coincidence.

> Mary Kidd TUNL - Duke University

Date submitted: 03 Jul 2007

Electronic form version 1.4