Abstract Submitted for the DNP07 Meeting of The American Physical Society

GFMC Calculations of Isospin-Mixing in ⁸**Be**¹ ROBERT B. WIRINGA, STEVEN C. PIEPER, MUSLEMA PERVIN, Argonne National Laboratory — ⁸Be has two 2⁺ states at 16.6 and 16.9 MeV excitation that are strongly isospin-mixed. We have performed microscopic Green's function Monte Carlo calculations of the isospin-mixing matrix elements between the T=0 and 1 states using the realistic Argonne v_{18} + Illinois-2 Hamiltonian, which includes strong CSB components and a full electromagnetic interaction. We obtain 80% of the empiricallydetermined matrix element, with 2/5 of our result coming from the terms beyond Coulomb, confirming an earlier variational study. We have also calculated the mixing between the nearby T=0,1 pairs of 1⁺ and 3⁺ states. Finally, we have examined the mixing of the T=1 2⁺ states with the first T=0 excited 2⁺ state at 3.0 MeV, which is the final state for weak decays from either ⁸Li or ⁸B. We find this state, which is an important laboratory for testing various aspects of weak interactions, to have extremely small T=1 contamination.

¹Work supported by U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02CH11357; computations performed at the LCRC facility of Argonne National Laboratory

> Robert Wiringa Argonne National Laboratory

Date submitted: 02 Jul 2007

Electronic form version 1.4