Abstract Submitted for the DNP07 Meeting of The American Physical Society

Study of the β -decay of ¹¹Li at ISAC/TRIUMF¹ CALEB MAT-TOON, Colorado School of Mines, F. SARAZIN, C. ANDREOIU, A. ANDREYEV, R.A.E. AUSTIN, G.C. BALL, R.S. CHAKRAWARTHY, D. CROSS, E.S. CUN-NINGHAM, J. DAOUD, P.E. GARRETT, G.F. GRINYER, G. HACKMAN, D. MELCONIAN, C. MORTON, C. PEARSON, J. RESSLER, J. SCHWARTZEN-BERG, M.B. SMITH, C.E. SVENSSON — The β -decay of ¹¹Li was investigated using the 8π β -decay spectrometer, an array of 20 Compton-suppressed HPGe detectors and 20 plastic scintillators for β -particle detection. Doppler-broadened line shapes appear in the experimental spectrum, resulting from the decay of excited states of 10 Be populated by β -delayed neutron emission. Using a Monte Carlo simulation, we have simulated the β -delayed neutron decay and subsequent γ -ray emission, in order to explore the excited states in ¹⁰Be and the neutron-emitting states in ¹¹Be. Overall agreement is observed with the two most recent studies [F. Sarazin et al, PRC70 (2004) and Y.Hirayama et al, PLB611 (2005)]. Analysis however also suggests the existence of small contributions from previously unobserved neutron branches.

¹This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03-93ER40789.

Caleb Mattoon Colorado School of Mines

Date submitted: 02 Jul 2007 Electronic form version 1.4