K isomers in Cm isotopes via deep-inelastic and transfer reactions1 U.S. TANDEL, P. CHOWDHURY, S.K. TANDEL, A.J. KNOX, C.M. WILSON, University of Massachusetts Lowell, I. AHMAD, M.P. CARPENTER, J.P. GREENE, S. GROS, R.V.F. JANSSENS, T.L. KHOO, F.G. KONDEV, T. LAURITSEN, C.J. LISTER, D. PETERSON, A. ROBINSON, D. SEVERYNIAK, X. WANG, S. ZHU, Argonne National Laboratory — K isomers in 246Cm and 248Cm (Z = 96) were populated via deep-inelastic and transfer reactions using a 209Bi beam at \sim 15\% above the Coulomb barrier, incident on a long-lived 248Cm target. This reaction mechanism has been employed for the first time in trans-plutonium nuclei to study high-K isomers. The out-of-beam data were collected using Gammasphere in different time regimes ranging from 80 microseconds up to 8 seconds to adjust to different isomer half-lives. The half-life of a known 8^- isomeric state in 246Cm has been measured to be \sim 1 s. A new high-K isomer with $K^\pi = (8^-)$ has also been discovered in 248Cm. These $K^\pi = 8^-$ isomers have the same underlying neutron $[624]7/2 \times [734]9/2$ configuration as is observed in the isotones 250Fm and 252No. These new data on high-K isomers will add to the limited knowledge of single-particle and pair-gap energies in heavy actinides.

1Supported by USDOE Grants DE-FG02-94ER40848 and W-31-109-ENG-38