Insights into Nuclear Triaxiality from Interference Effects in $E2$ Matrix Elements1 J.M. ALLMOND, J.L. WOOD, W.D. KULP, Georgia Institute of Technology — Recently, we have introduced [1] a triaxial rotor model with independent inertia and $E2$ tensors. The $E2$ matrix elements [2] of the osmium isotopes (186, 188, 190, and 192) are studied in the framework of this model (59 of 84 $E2$ matrix elements deviate by 30% or less). It is shown that interference effects in the inertia tensor (K-mixing) and the $E2$ tensor can lead to significant reductions in the diagonal $E2$ matrix elements. In some instances, the diagonal $E2$ matrix elements may decrease with increasing spin. Additionally, a sum rule for diagonal $E2$ matrix elements is shown and used to explore missing strength from K-admixtures.

1DOE Grant No. DE-FG02-96ER40958.

J.M. Allmond
Georgia Institute of Technology

Date submitted: 03 Jul 2007