DNP07-2007-000375

Abstract for an Invited Paper for the DNP07 Meeting of the American Physical Society

Laser Trapping and Probing of Exotic Helium Isotopes

ZHENG-TIAN LU, Physics Division, Argonne National Laboratory; Department of Physics and Enrico Fermi Institute, University of Chicago

We have succeeded in laser trapping and cooling of the exotic helium isotopes, both 6 He ($t_{1/2}=0.8$ sec) and 8 He ($t_{1/2}=0.1$ sec), and have performed precision laser spectroscopy on individual trapped atoms. Based on the atomic isotope shifts measured along the isotope chain 3 He - 4 He - 6 He - 8 He, and on the precise theory of the atomic structure of helium, the nuclear charge radii of 6 He and 8 He are determined for the first time in a method independent of nuclear models. The results are compared with the values predicted by a number of nuclear structure calculations and test their ability to characterize these neutron rich, loosely bound halo nuclei. The 6 He measurement was performed at ATLAS of Argonne, and the 8 He measurement at GANIL, France. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.