High precision mass measurement of sulfur near $N = 28$\(^1\)

AMANDA PRINKE, NSCL, C. BACHELET, M. BLOCK, G. BOLLEN, M. FACINA, C.M. FOLDEN III, C. GUENAUT, A.A. KWIATKOWSKI, D.J. MORISEY, G.K. PANG, R. RINGLE, J. SAVORY, P. SCHURY, S. SCHWARZ — High-precision mass measurements have been performed on the neutron-rich sulfur isotopes $40-44S$ using the Low Energy Beam and Ion Trap (LEBIT) 9.4 T Penning trap at the NSCL. Produced via projectile fragmentation with a 48Ca primary beam, the ions were converted into a low-energy beam via gas stopping and then transferred into a 9.4 T Penning trap mass spectrometer. Mass uncertainties as low as 20 keV have been achieved in a mass region with important nuclear structure effects like the disappearance of the $N=28$ shell closure and the appearance of a strong subshell closure in neighboring $Z=14$. The experiments were of further technical interest because of the type of beams that can be extracted from gas stoppers. Not only atomic sulfur ions but also several different radio-molecules were used for the mass determination.

\(^1\)Supported by the National Science Foundation Grant \# PHY-0110253 and the US Department of Energy Contract \# DE-FG0200ER41144.