Abstract Submitted for the DNP07 Meeting of The American Physical Society

Shape Coexistence in Transitional Nuclei¹ W.D. KULP, Georgia Institute of Technology, P. SCHMELZENBACH², Oregon State University, J.L. WOOD, J.M. ALLMOND, Georgia Institute of Technology, K.S. KRANE, J. LOATS, C.J. STAPELS, Oregon State University, E.B. NORMAN, Lawrence Berkeley National Laboratory — The "transitional" nuclei near N = 90 have long been a focus of experimental and theoretical investigations. We report on a program of study of the N = 90 and N = 88 nuclei with a focus on the structure of ¹⁵⁰Sm elucidated through new high-statistics, precision γ -ray coincidence spectroscopy and $\gamma - \gamma$ angular correlation data from the radioactive decay of ¹⁵⁰Pm ($T_{1/2} = 2.68$ h, $Q^- = 3454$ keV, $J^{\pi} = 1^-$) and 150m,g Eu $(T_{1/2} = 12.8$ h, $J^{\pi} = 0^-$ and $T_{1/2} = 36.9$ y, $J^{\pi} = 5^{(-)}$, respectively, $Q^+(g.s.) = 2261$ keV). In particular, very weak key collective transitions (e.g., the $2^+_2(1046) \rightarrow 4^+_1(773)$ 272 keV γ ray) are observed and precision $\delta(E2/M1)$ mixing ratios are extracted (determining $\Delta J = 0$ transitions). This data, when combined with published results from conversion electron measurements, two-neutron transfer studies, and Coulomb excitation supports the results from detailed multiple-spectroscopy studies of 152 Sm [1] indicating that shape coexistence underlies the structure at N = 88,90. [1] W. D. Kulp, et al., arXiv:0706.4129 [nucl-ex].

¹Work supported in part by U. S. DOE grants/contracts DE-FG02-96ER40958 (Ga Tech), DE-FG03-98ER41060 (OSU), and DE-AC03-76SF00098 (LBNL). ²Present address: Point Loma Nazarene University

> W. D. Kulp Georgia Institute of Technology

Date submitted: 03 Jul 2007

Electronic form version 1.4