Abstract Submitted for the DNP07 Meeting of The American Physical Society

Test of Internal-Conversion Theory with Precise γ - and x-ray Spectroscopy: ¹³⁴Cs^m, ¹³⁷Ba, ¹³⁹La N. NICA, J.C. HARDY, C. BALONEK, V.E. IACOB, J. GOODWIN, H.I. PARK, W.E. ROCKWELL, Texas A&M University, M.B. TRZHASKOVSKAYA, Petersburg Nucl. Phys. Inst. — We recently reported [1] a measurement of the ratio of K-shell internal conversion coefficients, α_K , for two transitions; the 127.5-keV E3 in 134 Cs and the 661.7-keVM4 in 137 Ba. Previous measurements of these α_K values disagreed with calculations. Our new result for the ratio, 30.01(15), disagrees with, but is a factor of three more precise than, the previous average of all experimental results and is consistent with modern Dirac-Fock calculations that include the atomic vacancy in the daughter. This confirms our earlier conclusion [2] that this approach is the best one for 193 Ir, a much heavier nucleus. In a new measurement we have now deduced the precise efficiency of our HPGe detector in the energy range of Cs-La K X-rays from the 165.9 keV,M1transition in ¹³⁹La, for which the α_K value can be reliably calculated and is nearly independent of whether the atomic vacancy is included or not. Based on this calibration, we have converted our ratio result into individual α_K results for the transitions in ¹³⁴Cs and ¹³⁷Ba: viz. $\alpha_K(127.5)=2.745(16)$ and $\alpha_K(661.7)=0.0915(6)$. Both results are in good agreement with calculations that include the atomic vacancy. [1] N. Nica et al., Phys. Rev. C75, 024308 (2007); [2] N. Nica et al., Phys. Rev. C70, 054305(2004).

> Ninel Nica Texas A&M University

Date submitted: 06 Jul 2007

Electronic form version 1.4