Abstract Submitted for the DNP07 Meeting of The American Physical Society

One Proton Knockout from a Relativistic ⁴⁵**Cl Ion Beam**¹ K.E. HOSIER, T.R. BAUGHER, L.A. RILEY, Ursinus College, P.D. COTTLE, K.W. KEMPER, Florida State University, P. ADRICH, D. BAZIN, J.M. COOK, C.A. DIGET, A. GADE, D.A. GARLAND, T. GLASMACHER, A. RATKIEWICZ, K.P. SIWEK, D. WEISSHARR, National Superconducting Cyclotron Laboratory, Michigan State University — The single particle structure and behavior of ⁴⁴S was analyzed through one-proton knockout conducted at the National Superconducting Cyclotron Laboratory at Michigan State University. A fast beam of ⁴⁴S fragments was produced from the one-proton knockout reaction ⁹Be(⁴⁵Cl, ⁴⁴S)X. The excited ⁴⁴S particles emitted gamma rays that were collected by the Segmented Germanium Array (SeGA). The measured gamma-ray spectrum of ⁴⁴S was fitted with GEANT simulations of the gamma-ray response of SeGA in order to extract gamma-ray intensities. A proposal for the level scheme of ⁴⁴S will be presented. Knockout cross sections were measured and the momentum distributions of the recoiling 44 S nuclei were analyzed to determine the orbital angular momentum of the proton knocked out.

¹This work was supported by the National Science Foundation under grant nos. PHY-0606007, PHY-0355129, and PHY-0653323.

Kelly Hosier

Date submitted: 01 Aug 2007

Electronic form version 1.4